• IMA sites
  • IMAJ services
  • IMA journals
  • Follow us
  • Alternate Text Alternate Text
עמוד בית
Tue, 07.05.24

Search results


October 2021
Amir Krivoy MD, Shai Shrot MD, Matan Avrahami MD, Tsvi Fischel MD, Abraham Weizman MD, Yael Mardor PhD, David Guez PhD, Dianne Daniels PhD, Athos Katelaris BSc, David Last PhD, and Chen Hoffmann MD

Background: Only a small proportion of schizophrenia patients present with catatonic symptoms. Imaging studies suggest that brain motor circuits are involved in the underlying pathology of catatonia. However, data about diffusivity dysregulation of these circuits in catatonic schizophrenia are scarce.

Objectives: To assess the involvement of brain motor circuits in schizophrenia patients with catatonia.

Methods: Diffusion tensor imaging (DTI) was used to measure white matter signals in selected brain regions linked to motor circuits. Relevant DTI data of seven catatonic schizophrenia patients were compared to those of seven non-catatonic schizophrenia patients, matched for sex, age, and education level.

Results: Significantly elevated fractional anisotropy values were found in the splenium of the corpus callosum, the right peduncle of the cerebellum, and the right internal capsule of the schizophrenia patients with catatonia compared to those without catatonia. This finding showed altered diffusivity in selected motor-related brain areas.

Conclusions: Catatonic schizophrenia is associated with dysregulation of the connectivity in specific motoric brain regions and corresponding circuits. Future DTI studies are needed to address the neural correlates of motor abnormalities in schizophrenia-related catatonia during the acute and remitted state of the illness to identify the specific pathophysiology of this disorder.

May 2016
Eran Millet MD, Josef Haik MD, Elad Ofir MD, Yael Mardor MD, Eyal Winkler MD, Moti Harats MD and Ariel Tessone MD

Background: Although fat grafting is a common technique to repair defects after breast cancer reconstruction surgery and has a low complication rate, the relation between fat grafting and the risk of breast cancer is unknown. Clinical trials to investigate this connection can elucidate the benefits and potential risks of fat grafting in oncology patients.

Objectives:To establish an efficient experimental model, using magnetic resonance imaging (MRI) scans, for comparing different breast tumor study groups post-fat grafting. 

Methods: Breast tumor cells were injected into immunocompromised mice. After tumors formed they were removed. Liposuction was performed in a female human donor and fat was collected. Cells were extracted from the fat by enzymatic digestion. Immunocompromised mice were randomized into four groups: a preliminary experiment group and three equal groups according to the type of fat graft: (i) fresh fat enriched with adipose-derived mesenchymal stem cells (AdMSCs), (ii) fresh fat without cell enrichment, and (iii) no fat injected. Tumor volume was assessed by serial MRI scans. 

Results: The rate of tumor growth was higher in the enriched fat group compared to the non-enriched fat group. 

Conclusions: This experimental model is an effective measurable method, allowing future investigation of the effect of autologous fat on breast cancer.

 

Legal Disclaimer: The information contained in this website is provided for informational purposes only, and should not be construed as legal or medical advice on any matter.
The IMA is not responsible for and expressly disclaims liability for damages of any kind arising from the use of or reliance on information contained within the site.
© All rights to information on this site are reserved and are the property of the Israeli Medical Association. Privacy policy

2 Twin Towers, 35 Jabotinsky, POB 4292, Ramat Gan 5251108 Israel